Chapter 13 Vectors

0606/12/F/M/20

1. In this question all distances are in km.

A ship *P* sails from a point *A*, which has position vector $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$, with a speed of 52 kmh^{-1} in the direction of $\begin{pmatrix} -5 \\ 12 \end{pmatrix}$.

(a) Find the velocity vector of the ship.

[1]

(b) Write down the position vector of *P* at a time *t* hours after leaving *A*.

[1]

At the same time that ship *P* sails from *A*, a ship *Q* sails from a point *B*, which

has position vector $\binom{12}{8}$, with velocity vector $\binom{-25}{45}$

(c) Write down the position vector of Q at a time t hours after leaving B.

[1]

(d) Using your answers to **parts (b)** and **(c)**, find the displacement vector \overline{PQ} at time *t* hours.

(e) Hence show that $PQ = \sqrt{34t^2 - 168t + 208}$.

[2]

(f) Find the value of *t* when *P* and *Q* are first 2 km apart.

[2]

0606/22/F/M/20

2. The position vectors of three points, *A*, *B* and *C*, relative to an origin *O*, are $\begin{pmatrix} -5 \\ -7 \end{pmatrix}$, $\begin{pmatrix} 10 \\ -4 \end{pmatrix}$ and $\begin{pmatrix} x \\ y \end{pmatrix}$ respectively. Given that $\overrightarrow{AC} = 4\overrightarrow{BC}$, find the unit vector in the direction of \overrightarrow{OC} . [5]

The diagram shows a triangle *OAB* such that $\vec{OA} = \mathbf{a}$ and $\vec{OB} = \mathbf{b}$. The point *P* lies on *OA* such that $\vec{OP} = \frac{3}{4} \vec{OA}$. The point *Q* is the mid-point of *AB*. The lines *OB* and *PQ* are extended to meet at the point *R*. Find, in terms of **a** and **b**,

a. \overrightarrow{AB}

[1]

b. \vec{PQ} , Give your answer in its simplest form.

It is given that $\vec{nPQ} = \vec{QR}$ and $\vec{BR} = k\mathbf{b}$, where *n* and *k* are positive constants.

- c. Find \vec{QR} in terms of *n*, **a** and **b**.
- d. Find \vec{QR} in terms of k, **a** and **b**.

[2]

[1]

e. Hence find the value of *n* and of *k*.

0606/13/M/J/20

4. (a) Find the unit vector in the direction of $\begin{pmatrix} 5\\ -12 \end{pmatrix}$.

(b) Given that $\binom{4}{1} + k \binom{-2}{3} = r \binom{-10}{5}$, find the value of each of the constants *k* and *r*.

[3]

[1]

(c) Relative to an origin *O*, the points *A*, *B* and *C* have position vectors **p**, 3**q-p** and 9**q**-5**p** respectively.

(i) Find \overrightarrow{AB} in terms of **p** and **q**.

[1]

(ii) Find \overrightarrow{AC} in terms of **p** and **q**

(iii) Explain why A, B and C all lie in a straight line.

[1]

(iv) Find the ratio AB : BC.

0606/21/M/J/20

5. The vectors **a** and **b** are such that $\mathbf{a} = a\mathbf{i}+\mathbf{j}$ and $\mathbf{b} = 12\mathbf{i}+b\mathbf{j}$.

(a) Find the value of each of the constants a and b such that $4\mathbf{a}-\mathbf{b} = (\alpha + 3)\mathbf{i}-2\mathbf{j}$.

[3]

(b) Hence find the unit vector in the direction of \mathbf{b} - 4 \mathbf{a} .

[2]

0606/11/O/N/20

- 6. A particle *P* is initially at the point with position vector $\begin{pmatrix} 30\\10 \end{pmatrix}$ and moves with a constant speed of 10 ms^{-1} in the same direction as $\begin{pmatrix} -4\\3 \end{pmatrix}$.
 - a. Find the position vector of *P* after *t* s.

As *P* starts moving, a particle *Q* starts to move such that its position vector

after *t* s is given by $\binom{-80}{90} + t\binom{5}{12}$.

b. Write down the speed of *Q*.

[1]

[3]

c. Find the exact distance between P and Q when t = 10, giving your answer in its simplest surd form.

The diagram shows the triangle *OAC*. The point *B* is the midpoint of *OC*. The point *Y* lies on *AC* such that *OY* intersects *AB* at the point *X* where *AX* : *XB* = 3:1. It is given that $\vec{OA} = \mathbf{a}$ and $\vec{OB} = \mathbf{b}$.

(a) Find \vec{OX} in terms of **a** and **b**, giving your answer in its simplest form.

[3]

(b) Find \vec{AC} in terms of **a** and **b**.

(c) Given that OY = hOX, find AY in terms of **a**, **b** and *h*.

[1]

(d) Given that AY = mAC, find the value of *h* and of *m*.

[4]

0606/22/O/N/20

In the diagram $\vec{OP} = 2\mathbf{b}$, $\vec{OS} = 3\mathbf{a}$, $\vec{SR} = \mathbf{b}$ and $\vec{PQ} = \mathbf{a}$. The lines *OR* and *QS* intersect at *X*.

(a) Find \vec{OQ} in terms of **a** and **b**.

[1]

(b) Find \vec{QS} in terms of **a** and **b**.

[1]

(c) Given that
$$\vec{QX} = \mu \vec{QS}$$
, find \vec{OX} in terms of **a**, **b** and μ .
[1]

(d) Given that $\vec{OX} = \lambda \vec{OR}$, find \vec{OX} in terms of **a**, **b** and λ .

[1]

(e) Find the value of μ and λ .

(f) Find the value of $\frac{QX}{XS}$.

[1]

(g) Find the value of $\frac{OR}{OX}$.

[1]

The Maths Society